

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS)

I B.TECH I SEMESTER END REGULAR EXAMINATIONS, FEB - 2023 LINEAR ALGEBRA & DIFFERENTIAL EQUATIONS

(Common to All Branches)

Time: 3 hours Max. Marks: 70

Answer all the questions from each UNIT (5X14=70M)

Q.N	No.	Questions	Marks	СО	KL				
UNIT-I									
1.	a)	find the rank of $A = \begin{pmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 2 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$ by reducing in to Echelon form	[7M]	1	2				
	b)	Solve $3x+3y-z+5t = 0, 3x-y+2z-7t = 0,$ $4x-y-3z+6t = 0, x-2y+4z-7t = 0$	[7M]	1	3				
OR									
2.	a)	Find the rank of $A = \begin{pmatrix} 2 & 1 & 3 & -1 \\ 3 & -1 & 2 & 0 \\ 1 & 3 & 4 & -2 \\ 4 & -2 & 1 & 1 \end{pmatrix}$ by reducing into Normal form	[7M]	1	2				
	b)	Show that the equations $x + y + z = 6$, $x + 2y + 3z = 14$, $x + 4y + 7z = 30$	[7M]	1	3				
		are consistent and solve them.							
UNIT-II									
3.	a)	Find the Eigen values and the corresponding Eigen vectors of $A = \begin{pmatrix} 3 & -5 & -4 \\ -5 & -6 & -5 \\ -4 & -5 & 3 \end{pmatrix}.$	[7M]	2	2				
	b)	Determine A^{-1} if $A = \begin{pmatrix} 11 & -6 & 2 \\ -6 & 10 & -4 \\ 2 & -4 & 6 \end{pmatrix}$ by using Cayley –Hamilton Theorem.	[7M]	2	2				
		OR		r	1				
4.		Reduce the Quadratic form $x^2 + 2y^2 + 2z^2 - 2yz + zx - 2xy$ to the Canonical form by Orthogonal relation also find its Nature and Signature	[14M]	2	3				
	UNIT-III								
5.	a)	Solve $\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$	[7M]	3	3				

Code No: P21BST01

	b)	Solve $y(xy + 2x^2y^2)dx + x(xy - x^2y^2)dy = 0$	[7M]	3	3				
OR									
6.	a)	Find the orthogonal trajectories of the family of curves $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ where 'a' is the parameter.	[7M]	3	2				
	b)	Solve $(x+y+1)\frac{dy}{dx} = 1$	[7M]	3	3				
UNIT-IV									
7.	a)	Solve $(D^2-4)y = e^x + \sin 2x + \cos^2 x$	[7M]	4	3				
	b)	Solve $(D^2 - 3D + 2)y = \cos 3x \cos 2x$	[7M]	4	3				
OR									
8.	a)	Solve the Differential equation (D^2+a^2) y = tan ax by the method of variation of parameters	[7M]	4	3				
	b)	Solve $(D^2-6D+13) y = 8 e^{3x}$	[7M]	4	3				
UNIT-V									
9.	a)	Find L ⁻¹ { $\frac{1}{(s+1)(s^2+1)}$ } by using convolution theorem	[7M]	5	2				
	b)	Prove that $\int_0^\infty t^3 e^{-t} \sin t dt = 0$	[7M]	5	3				
OR									
10.		Solve the initial value problem by using Laplace transform	[14M]	5	3				
		$y''(t) - 4y'(t) + 5y(t) = 125t^2, y(0) = y'(0) = 0$							
